Logic Design Lab EEL3712| Experiment 6

EXPERIMENT 6

Binary Adders

OBJECTIVES:

* Design a 1-bit full adder based on its truth table.
* Demonstrate modular design and hierarchy.
» Use Xilinx simulation tools to test combinational circuits.

MATERIALS:

e Xilinx Vivado software, student or professional edition \V2018.2 or higher.

e IBM or compatible computer with Pentium 111 or higher, 128 M-byte RAM or more, and 8
G-byte Or larger hard drive.

e BASYS 3 Board.

DISCUSSION:

Addition and subtraction are two essential arithmetic functions performed by computers and
other digital systems. It is therefore important to understand how to design a circuit to perform
such functions. However, since subtraction is done by adding the 2s complement of a number,
we will only need to design one adder circuit to perform both operations. An adder can be 1 or
more bits. A 4-bit adder can add two 4-bit unsigned binary numbers. If larger binary numbers are
to be added, an adder with more bits is needed. Let’s observe what happens when adding two
4-bit binary numbers with pencil and paper:
Carry-out<,—— (3 C2C1 C00<—Carry-in
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The symbols [A3 A2 Al AO] and [B3 B2 B1 BO] represent addend and minuend, respectively. CO is
the carry bit generated by adding bits A0 and BO. C1 is the carry bit generated from the addition
of CO, Al, and B1. C2 and C3 are generated in the same manner, with C3 the carry-out. The
column containing A0 and BO (the least significant bits of addend and minuend) allows for a
carry-in from a previous addition, for this example we set it to 0. Each column adds three bits.
The implementation of the above process in hardware called a full adder.

When we perform this addition, we will start from the least significant bit, and then push the
process left one bit at a time. This means that a 1-bit full adder is the basic element of a 4-bit
adder and four such elements are needed to construct a 4-bit adder.

The 1-Bit Full Adder

From the discussion above we know that a 1-bit full adder should have three inputs: carry input
(Cin), addend (A), and minuend (B). We can determine the number of output bits by looking at
any column in the addition process, say, the column containing CO, A1 and B1. Assume all three
bits are 1. Then the result is 3 which, in binary, are 11. The sum requires two bits but S1 can be
only one bit, so there must be a carry to the next column. Each column will produce a sum bit
and a carry output to the next more significant bit position. So the circuit for the 1-bit full adder
should have two outputs: sum bit (S) and carry output (Cout). Table 7.1 shows the truth table
for the 1-bit full adder:

Inputs Outputs

A B Cin Cout S
0 0 0 0 0
0 0 1 0 1
0 1 0 0 1
0 1 1 1 0
1 0 0 0 1
1 0 1 1 0
1 1 0 1 0
1 1 1 1 1

Using Boolean algebra, we can derive the following two equations for the sum bit and the carry
output bit:

S=A®B®C
Cou= Ca(A + B)+AB
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The above two equations can be implemented using a 3-input XOR gate, two 2-input AND gates,
and two 2-input OR gates.

The 4-Bit Adder

Once we have the 1-bit full-adder (FA), we can use it as a building block in any design that needs to
do addition, such as the multi-bit adder in a CPU. In a multi-bit adder, the carry-in of the least
significant bit (LSB) must be connected to O since there is no previous stage. The carry output from
the LSB stage should feed into the second least significant bit. The carry output of second least
significant stage feeds into the next more significant stage as carry input, and so on. The last carry
output is the most significant bit of the sum. The 4-bit adder block diagram with interconnections
between the FA modules is shown in figure below:

B: A B Ao B: A B:e Ao

S S D A A O

Cs C: Ca Co
FA4 |« FA4 |« FA [+ F4 [+— 0O
3 Sa Sa S1 Se
PROCEDURE:
Section I. The 1-Bit Full Adder
1. Open Xilinix Vivado.
VIVADO! € XILINX.

Open Example Project >

Tasks

Manage 1P >
Open Hardware Manager >
Xlinx Tel Store >

Learning Center

Documentation and Tutorials >
Quick Take Videas >
Release Notes Guide >
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2. Inthe Xilinx-Project Navigator window, Quick start, New Project.

[

Create a New Vivado Project

VvVINVADO”

HLx Editions This wizard will guide you through the creation of a new project.

To create a Vivado project you will nesd to provide a name and a location for your project files. MNext, you

will specify the type of flow you’'ll be working with. Finally, yvou will specify your project sources and
choose a default part.

&2 XILINX

A
)

A

= Cancel

3. Name the project.

Project Name

Enter a name for your project and specify a directory where the project data files will be stored ’
Project name: project
Project location: C/XilinVivado/2018.2 El

~" Create project subdirectory

Project will be created at: CJXilinxVivado/2018_2/project

'

{
LN,
L)
(]
w
0
k)
;
B
.,

Cancel
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4. Choose “RTL Project” and check the “Do not specify sources at this time” as we will
configure all the settings manually through the navigator from inside the project.

5. Select New Source... and the New window appears. In the New window, choose
Schematic, type your file name (such as source_1) in the File Name editor box, click

Project Type

L

Add Sources

Specify HDL, netlist, Block Design, and IP files, or directories containing those files, to add to your project. Create a new source '
file on disk and add it to your project. You can also add and create sources later.

=+,
Use Add Files, Add Directories or Create File buttons below
Add Files | | Add Directories | | Create File
Target language: WHDL - Simulator language: WHDL -
e

on OK, and then click on the Next button.

6. In the Xilinx - Project Navigator window, select the following
e Category: “General Purpose”

e Family: “Artix-7”

e Package: “cpg236”

e Speed: “-1”

e Choose “xc7a35tcpg236-1” that corresponds to the board we are using.
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Then Choose Finish.

Default Part

Choose a default Xilinx part or board for your project. This can be changed later. '

Reset All Filters

Category. | General Purpose

Family: Artix-7

- Package:

- Speed:

cpg236
-1L

- Temperature: | | R

Search: xc7a3sticpg | (1 match)

Part VO Pin Count Awailable 10Bs LUT Elements FlipFlops Block RAMs
¥c¥al3bticpg236-1L 236 106 20800 41600 50
<

New Project Summary

VIVADO

HLx E;

© A new RTL project named "project will be created
€ 1 source file will be added.
Mo constraints files will be added. Use Add Sources to add them later

o The default part and product family for the new project:
Default Part: xc7a35ticpg236-1L
Product: Artix-7
Family: Artix-7
Package: cpg236
Speed Grade: -1L

& XILINX.

To create the project, click Finish

()

A

Ultra RAMs DsSPs GE

a0 2

Cancel

Cancel
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7. The Define Module Window that will appear, we will choose the input and output
labels for the gates under investigation in this experiment. In this experiment, we are
investigating De Morgan’s Theorem and we use 4 inputs to get 2 outputs. Under “Port
Name”, add “A”, “B”, and “Cin” as inputs and add “S”, “Cout” as outputs and select
OK.

,' Define Module @

Define a module and specify I/ Ports to add to your source file.

For each port specified:
MSB and LSB values will be ignored unless its Bus column is checked. '
Ports with blank names will not be written.

Module Definition
Entity name: srcl

Architecture name: |Behavioral

IO Port Definitions

+ =t 3

PortMame  Direction Bus MSB LSB
A in hd

B in v

Cin in N

Cout out v

5 out N

If;\l
2) oK Cancel

8. Inthe “source_1.vhd” created file, type the gates equivalent VHDL code for the S and
Cout between the “begin” and “end Behavioral” as follows and then save the file.

library IEEE;
use IEEE.STD LOGIC 1164.ALL;

i}

< Eentity full adder wvhdl code is
Port ( & : in STD LOGIC;

B : in STD LOGIC;

Cin : in STD LOGIC;

S : gut STD_LOGIC;

g Cout : out STD LOGIC):
10 end full_adder_vhdl_code:

12 [ architecture gate_level of full_ adder vhdl code is

begin

) 5 ¢<= L ¥OR B XOR Cin ;
) Cout <= (A AND B) CR (Cin AND &) OR (Cin ZND B) ;

192 end gate_ level;
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9.

Next, we need to add a constraint file with the”.xdc” extension, as following:

Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add
or create constraints”. Next, choose “Create File” and enter the file name “lab_6” then
“OK” followed by “Finish”.

10. Then, we need to get a template xdc file that is going to be edited according to the

11.

different experiments. Google “basys 3 xdc file” and choose the “xilinix” link that
appears (https://www.xilinx.com/support/documentation/university/Vivado-
Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3 _Master.xdc).
Copy the whole file and paste it into the “lab_2.xdc” that you have just created in the
last step. Then uncomment and edit the input Switches and the output LEDs as in the
next step.

Uncomment (by deleting the # sign) the ones you are going to use as following:

2 1tches

-t =l

12 . set property PRCERGE PIN V17 [get ports {[i}]

13 set property IOSTRANDRRD LWVCMOI33 [get ports {al]

14 | set property PACKRGE PIN V16 [get ports {B]l]

15 ¢ get property IOSTRNDARD LWVCMO3I33 [get ports [Bl]

. get property PACEKRGE PIN Wlé [get ports [Cin]]

L'E get property IOSTRANDARD LVCMOS3S [get ports [Cin]]
' Zeost property PACKASE PIN F17 [oet ports e P97 LT

ports {sw[3]}

47 | get property PACERGE PIN Ulé [get ports [5]]

42 get property IOSTANDRRD LWCMOS33 [get ports [5]]

19 | set property PACERGE PIN E19 [get ports [Cout]]

set property IOSTANDRRD LVCMOS33 [get ports {Cnuth]

Lot mroperty DACKASE 1 Faet norts J

[

L

[ T o o IOl B ) |

(=R ]
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12.  From the tool tab choose the play button P> and then “Run Implementation”.
Select "Number of jobs” =1 and then press OK.

#  Launch Runs =

Launch the selected synthesis or implementation runs.

Launch directary: | e« =Default Launch Directory= w
Options
#® Launch runs on local host:  Wumber of jobs: | 1 L

Generate scripts only

Dont show this dialog again

13.  The implementation errors window will appear if any or the successfully
completed window. From this window select “Generate Bitstream” and then OK.

This will make the software generate “.bin” file to be used in programing the
hardware BAYAS 3.

Implermentation Completed X

o Implementation successfully completed.

Hext
Open Implemented Design
@ Generate Bitstream

View Reports

Dont show this dialog again

14. The next window will appear in which choose “Open Hardware Manger”, connect
the Hardware Kit to the USB port and then press OK.
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o Bitstream Generation successfully completed.
Next

Dpen Implemented Design

View Reports
#® Open Hardware Manager

Generate Memory Configuration File

Dont show this dialog again

LA

15. A green tab will appear in the top of the Vivado window, from which choose
“open target” to program the hardware.

16. From the window appears, select the “.bin” file from the Project you create by

browsing for the generated “.bit file” under the “.runs” folder and program the board
then press OK.

[

Lookin impl_1 v tadiE, BXC EEE
Xil Recent Directories
"
Vi source_1 bit CoXilinxVivadoi2018.2 v
File Preview

File: source_1.bit

Directory: C:/XilinxVivado/2018.2/project/project runsimpl_1
Created: Today at 16:31 PM

Accessed: Today at 16:31 PM

Modified: Today at 16:31 PM

Size: 2.1 MB

Type: Bitstream file

Owner: ECE-3865-832F\mabde030

File pame: source_1.bit

Files of fype Bitstream Files (.bit, bin, rbt)
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17. Notice that the 7-segment on the hardware is counting up from 0 to 9
frequently until you download the program and it will stop.

XILINX

18.  Test the program on your board by going through all the input combinations and
observing the two outputs. Fill the truth table.

Inputs Outputs

B Cin Cout s

BlRrRprlRr|loo|o|o |k
i =l = =Rl =R =]
[l N N e T Y (e I Y

19. Arethe two output the same? If they are, you have proved the Boolean distributive
law. If not, figure it out.

20. Then you can use the simulation tools to verify the Boolean distributive law. For
simulation, we need to create a simulation source file as following:
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21.  “Flow Navigator” 2 “Project Manager” = “Add Sources” = “Add or create
simulation sources” =» Name it “TB” (Test Bench) = “VHDL” =» No need for
switches and leds assignments as we will not be working on board. = “OK”.

22.  After that, implement your simulation as similarly:

1 LIBRERY ieee;

2, USE ieee.std logic 1164.RLL;

ENTITY Testbench full_ adder I3

5[ END Testbench full adder;

LARCHITECTURE behavior OF Testbench full adder I3

Ire)

23.

24.

L R = =

E gignal A :
, 3ignal B : std logic := "0';
E g3ignal C

. COMECHENT full adder vhdl code
\ BORT(

: IN std logic;

: IN std logic;
in & IN std legicy

» OUT std logics

E Cout @ OUT std logic
B
. END COMPONENT;

std logic := '0';

. signal Cout : std logic;

30 BEGIN

-- Instantiate the Unit Under

| uuts full_adder vhdl_code PORT MAF (
TR o=y B,

B =» B,

' Cin => Cin,
|5 =» 5,

' Cout =» Cout

K

needs.

You should see similar output:

stim proc: process
begin
—= pold yeset state :':"

wait for 100 na;

L<="1";
B<="'0";
Cin <= '0";

wait for 10 na;

Lg=10";
Cin <= '0";

wait for 10 ns;

Lg=11":
Bg="1":
Cin <= "1";

wait for 10 ns;

end procesas;

B0

END:

In the “initialization” section change the simulation variables according to your
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a A
a B

a Cin
s

o Cout

Section Il. Building a 4-bit Adder Using Full-Adder (FA) Modules

In this part of the experiment, we will show how to perform modular design by building the 4-bit
adder using four 1-bit full adder modules. We will start with making a symbol for a 1-bit full adder
and add it as a module to the project library.

1. Create a new source file called four_bit_adder under the same project. Write the
following code:
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[

LA =

(=41

(i} 1 @ O W= L

Ts)

full_adder.vhd

¥ | cons6.xdc ® | sim6.vhd

x B B X // BE

likrary IEEE;
uze IEFE.STD LOGIC 1164.ALL;

entity Ripple Adder is
Port ( L :
8 : in STD_LOGIC WECTOR (3 downto 0);
Cin : in STD_LOGIC;

5 : out S5TD_LOGIC VECTOR (3 downto 0);
Cout : cut S5TD LOGIC);

end Ripple Adder;

architecture Behawvioral of Ripple_Rdder is

Full Adder VHDL Code Component

component full adder vhdl code
Port ( & : in STD LOGIC;

B : in STD_LOGIC;

Cin : in 5TD LOGIC:

3 : out STD LOGIC;

Cout : out STD LOGIC):

end component;

Mapping Full Adder £ times

in 5TD LOGIC VECTOR (3 downto 0);

«  four_bit_adder.vhd » four_bit_a

C:/Usersiaayde001/project_6.2/project_G.2 srcsisources_1/inewfour_bit_adder.vhd

Fil: full adder wvhdl code port map{ &{0), B(0), Cin, 5(0), cl);
Fi2: full adder vhdl code port map{ &{l), B(1l), cl, 5(1), c2):
F&3: full adder wvhdl code port map{ &{2), B(2), c2, 5(2), c3);
Fi4: full adder whdl code port map{ &({3), B(3), c3, 35(3), Cout):

end Behavicral;

Experiment 6

2. Then create the simulation as you did before and write the following code for

simulation.
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?nut =» Cout

i

1 LIBRARY ieee;

2. USE ieee.std logic 1164.RLL:

4 ENTITY Tk Ripple RAdder IS

L END Tk Ripple Rdder:

7. ZRCHITECIURE behavior OF Tb Ripple Rdder IS

g, \-— Component Declaration for the Unit Under Test (TUT)
11 (COMEONENT Ripple Adder
12 . ‘PORT {
13 & @ IN std logic wector(3 downto 0);
14 B : IN std logic vector(3 downto 0);
15 Cin : IN 3td logic;
1a , 5 : OUT std logic vector(3 downto 0);
17 Cout : OUT std logic
1z | i
19 . END COMECNENT;
22 E Esignal B std logic vector (3 downto 0) := {others =» "0");
23 aignal B std logic wvector(3 downto 0) := (others =» '0");
24 E Esignal Cin : std legic := "0';
27 E Esignal 5 @ std legic wector(3 downto 0);
28 gignal Cout : std logic;
30, BEGIN
32 \—— Instantiate the Unit Under Test (UUT)
33 . nut: Ripple Adder FORT MAP
34 B =x &,
35 . B => B,
38 €in => Cin,
37 . 5 = 5,

o

(1]
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Scope

Sources

Objects

E3
1l
[
it
¥
i}
]
[
[
-
]
1]

"0110";
"1100v;

|_||:|| |
= i
MM
i

for 100 ns;
"1111v;
riio00v;

£,
1l
-
t

|_||:|| |
o e i
MM
o

for 100 ns;
"oriov;
roriiv;

E3
2
[ 8
t

|_||:|| |
=l S i
MM
o

for 100 ns;
"oriov;
"i11o0v;

=
1
-
t

|_||:|| |
= i
A
i n

) ‘wait for 100 ns;
) n <= "1111v:
B «= "m1111";

end process;

END;

3. Example output of simulation:

Untitled 7
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4. Fill the table accordingly by changing your initialization part of the code:

THUTBRETT|
_.\Jm
—
L
=
=
2+ | @
=
=) o
...__..._.-1.,.5
O
-
I
B
—_| 2
]
BUILYD el Gl G s B | _..:_.1,_-3..1..«.,_
B et | - ot |
® | m = I == oo |m ||
[ m | vt | ot | | g | | ot | ot | |
—|° | ™ olo|lole|o|o|e|m|~|~|c|~
=
(=1
Elwv|m olo|o|ale|o ==
S
0
Q
m [Eewraa(] e fen | =t [v [~ | oo = |22 e
i
Vo | A ol—lo|l—~|~|o —| oo~
?.J_m el Bl =1 E=1 K N K= T IES IS W T I
EM o | S ] ] - =l Bl =N KN R
lm pay Ram Y s ) o i s B IS (=] ey L BR
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QUESTIONS

1. Find the ADD4 symbol in the symbol library. Draw a schematic diagram in the space provided
below and show how to make an 8-bit adder using the ADD4s.

2. If you are asked to build and simulate the above design, what types of I/O buffers (symbols) would
be convenient to use? How many sum bits would you expect to have?

3. What is a carry look-ahead adder? Why is it preferred over a regular adder? (Refer to your
textbook and diagrams of Ripple Carry and Carry Lookahead in the following.)
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