
Logic Design Lab EEL3712l Experiment 6

P a g e 1 | 19

EXPERIMENT 6

Binary Adders

OBJECTIVES:

• Design a 1-bit full adder based on its truth table.

• Demonstrate modular design and hierarchy.

• Use Xilinx simulation tools to test combinational circuits.

MATERIALS:

 Xilinx Vivado software, student or professional edition V2018.2 or higher.

 IBM or compatible computer with Pentium III or higher, 128 M-byte RAM or more, and 8

G-byte Or larger hard drive.

 BASYS 3 Board.

DISCUSSION:

Addition and subtraction are two essential arithmetic functions performed by computers and

other digital systems. It is therefore important to understand how to design a circuit to perform

such functions. However, since subtraction is done by adding the 2s complement of a number,

we will only need to design one adder circuit to perform both operations. An adder can be 1 or

more bits. A 4-bit adder can add two 4-bit unsigned binary numbers. If larger binary numbers are

to be added, an adder with more bits is needed. Let’s observe what happens when adding two

4-bit binary numbers with pencil and paper:

Logic Design Lab EEL3712l Experiment 6

P a g e 2 | 19

The symbols [A3 A2 Al A0] and [B3 B2 B1 B0] represent addend and minuend, respectively. C0 is

the carry bit generated by adding bits A0 and B0. C1 is the carry bit generated from the addition

of C0, Al, and B1. C2 and C3 are generated in the same manner, with C3 the carry-out. The

column containing A0 and B0 (the least significant bits of addend and minuend) allows for a

carry-in from a previous addition, for this example we set it to 0. Each column adds three bits.

The implementation of the above process in hardware called a full adder.

When we perform this addition, we will start from the least significant bit, and then push the

process left one bit at a time. This means that a 1-bit full adder is the basic element of a 4-bit

adder and four such elements are needed to construct a 4-bit adder.

The 1-Bit Full Adder

From the discussion above we know that a 1-bit full adder should have three inputs: carry input

(Cin), addend (A), and minuend (B). We can determine the number of output bits by looking at

any column in the addition process, say, the column containing C0, A1 and B1. Assume all three

bits are 1. Then the result is 3 which, in binary, are 11. The sum requires two bits but S1 can be

only one bit, so there must be a carry to the next column. Each column will produce a sum bit

and a carry output to the next more significant bit position. So the circuit for the 1-bit full adder

should have two outputs: sum bit (S) and carry output (Cout). Table 7.1 shows the truth table

for the 1-bit full adder:

Using Boolean algebra, we can derive the following two equations for the sum bit and the carry

output bit:

Logic Design Lab EEL3712l Experiment 6

P a g e 3 | 19

The above two equations can be implemented using a 3-input XOR gate, two 2-input AND gates,

and two 2-input OR gates.

The 4-Bit Adder

Once we have the 1-bit full-adder (FA), we can use it as a building block in any design that needs to

do addition, such as the multi-bit adder in a CPU. In a multi-bit adder, the carry-in of the least

significant bit (LSB) must be connected to 0 since there is no previous stage. The carry output from

the LSB stage should feed into the second least significant bit. The carry output of second least

significant stage feeds into the next more significant stage as carry input, and so on. The last carry

output is the most significant bit of the sum. The 4-bit adder block diagram with interconnections

between the FA modules is shown in figure below:

PROCEDURE:

Section I. The 1-Bit Full Adder

1. Open Xilinix Vivado.

Logic Design Lab EEL3712l Experiment 6

P a g e 4 | 19

2. In the Xilinx-Project Navigator window, Quick start, New Project.

3. Name the project.

Logic Design Lab EEL3712l Experiment 6

P a g e 5 | 19

4. Choose “RTL Project” and check the “Do not specify sources at this time” as we will

configure all the settings manually through the navigator from inside the project.

5. Select New Source… and the New window appears. In the New window, choose

Schematic, type your file name (such as source_1) in the File Name editor box, click

on OK, and then click on the Next button.

6. In the Xilinx - Project Navigator window, select the following

 Category: “General Purpose”

 Family: “Artix-7”

 Package: “cpg236”

 Speed: “-1”

 Choose “xc7a35tcpg236-1” that corresponds to the board we are using.

Logic Design Lab EEL3712l Experiment 6

P a g e 6 | 19

Then Choose Finish.

Logic Design Lab EEL3712l Experiment 6

P a g e 7 | 19

7. The Define Module Window that will appear, we will choose the input and output

labels for the gates under investigation in this experiment. In this experiment, we are

investigating De Morgan’s Theorem and we use 4 inputs to get 2 outputs. Under “Port

Name”, add “A”, “B”, and “Cin” as inputs and add “S”, “Cout” as outputs and select

OK.

8. In the “source_1.vhd” created file, type the gates equivalent VHDL code for the S and

Cout between the “begin” and “end Behavioral” as follows and then save the file.

Logic Design Lab EEL3712l Experiment 6

P a g e 8 | 19

9. Next, we need to add a constraint file with the”.xdc” extension, as following:

Go to “Flow Navigator” and from “Project Manager” select “Add Sources” then “Add

or create constraints”. Next, choose “Create File” and enter the file name “lab_6” then

“OK” followed by “Finish”.

10. Then, we need to get a template xdc file that is going to be edited according to the

different experiments. Google “basys 3 xdc file” and choose the “xilinix” link that

appears (https://www.xilinx.com/support/documentation/university/Vivado-

Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc).

Copy the whole file and paste it into the “lab_2.xdc” that you have just created in the

last step. Then uncomment and edit the input Switches and the output LEDs as in the

next step.

11. Uncomment (by deleting the # sign) the ones you are going to use as following:

https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc
https://www.xilinx.com/support/documentation/university/Vivado-Teaching/HDL-Design/2015x/Basys3/Supporting%20Material/Basys3_Master.xdc

Logic Design Lab EEL3712l Experiment 6

P a g e 9 | 19

12. From the tool tab choose the play button and then “Run Implementation”.

Select ”Number of jobs” =1 and then press OK.

13. The implementation errors window will appear if any or the successfully

completed window. From this window select “Generate Bitstream” and then OK.

This will make the software generate “.bin” file to be used in programing the

hardware BAYAS 3.

14. The next window will appear in which choose “Open Hardware Manger”, connect

the Hardware Kit to the USB port and then press OK.

Logic Design Lab EEL3712l Experiment 6

P a g e 10 | 19

15. A green tab will appear in the top of the Vivado window, from which choose

“open target” to program the hardware.

16. From the window appears, select the “.bin” file from the Project you create by

browsing for the generated “.bit file” under the “.runs” folder and program the board

then press OK.

Logic Design Lab EEL3712l Experiment 6

P a g e 11 | 19

17. Notice that the 7-segment on the hardware is counting up from 0 to 9

frequently until you download the program and it will stop.

18. Test the program on your board by going through all the input combinations and

observing the two outputs. Fill the truth table.

19. Are the two output the same? If they are, you have proved the Boolean distributive

law. If not, figure it out.

20. Then you can use the simulation tools to verify the Boolean distributive law. For

simulation, we need to create a simulation source file as following:

Logic Design Lab EEL3712l Experiment 6

P a g e 12 | 19

21. “Flow Navigator”  “Project Manager”  “Add Sources”  “Add or create

simulation sources”  Name it “TB” (Test Bench)  “VHDL”  No need for

switches and leds assignments as we will not be working on board.  “OK”.

22. After that, implement your simulation as similarly:

23. In the “initialization” section change the simulation variables according to your

needs.

24. You should see similar output:

Logic Design Lab EEL3712l Experiment 6

P a g e 13 | 19

Section II. Building a 4-bit Adder Using Full-Adder (FA) Modules

In this part of the experiment, we will show how to perform modular design by building the 4-bit

adder using four 1-bit full adder modules. We will start with making a symbol for a 1-bit full adder

and add it as a module to the project library.

1. Create a new source file called four_bit_adder under the same project. Write the

following code:

Logic Design Lab EEL3712l Experiment 6

P a g e 14 | 19

2. Then create the simulation as you did before and write the following code for

simulation.

Logic Design Lab EEL3712l Experiment 6

P a g e 15 | 19

Logic Design Lab EEL3712l Experiment 6

P a g e 16 | 19

3. Example output of simulation:

Logic Design Lab EEL3712l Experiment 6

P a g e 17 | 19

4. Fill the table accordingly by changing your initialization part of the code:

Logic Design Lab EEL3712l Experiment 6

P a g e 18 | 19

QUESTIONS

1. Find the ADD4 symbol in the symbol library. Draw a schematic diagram in the space provided
below and show how to make an 8-bit adder using the ADD4s.

2. If you are asked to build and simulate the above design, what types of I/O buffers (symbols) would

be convenient to use? How many sum bits would you expect to have?

3. What is a carry look-ahead adder? Why is it preferred over a regular adder? (Refer to your

textbook and diagrams of Ripple Carry and Carry Lookahead in the following.)

Logic Design Lab EEL3712l Experiment 6

P a g e 19 | 19

